又大又长粗又爽又黄少妇毛片,亚洲欧美日韩综合一区在线观看,伊人久久精品,一区二区三区精品,亚洲综合色自拍一区,一本一道久久久a久久久精品91

機(jī)器人資訊
  1. 中國(guó)制造2025前瞻:無(wú)人機(jī)的未來(lái)(二)
  2. 【重磅】人工智能書(shū)寫(xiě)醫(yī)療健康產(chǎn)業(yè)新篇章(下)
  3. 人工智能書(shū)寫(xiě)醫(yī)療機(jī)器人產(chǎn)業(yè)新篇章
  4. 牛!市一院參與研發(fā)“國(guó)之重器”骨科手術(shù)機(jī)器人
  5. 機(jī)器人胰腺手術(shù)全球直播
技術(shù)教程
示教器維修
伺服電機(jī)維修
首頁(yè) > 機(jī)器人資訊 > 谷歌開(kāi)源AI能區(qū)分聲音準(zhǔn)確率達(dá)92%

谷歌開(kāi)源AI能區(qū)分聲音準(zhǔn)確率達(dá)92%

日期:2019-03-05   人氣:  來(lái)源:互聯(lián)網(wǎng)
簡(jiǎn)介:谷歌開(kāi)源AI能區(qū)分聲音準(zhǔn)確率達(dá)92% 據(jù)VentureBeat報(bào)道,在語(yǔ)音嘈雜的環(huán)境中,要想分辨出有幾個(gè)人講話、在什么時(shí)間講話,對(duì)于機(jī)器來(lái)說(shuō)非常困難。但谷歌人工智能(AI)研究部門(mén)在語(yǔ)音識(shí)別方面取得了新進(jìn)展,能以92%的準(zhǔn)確率識(shí)別出每個(gè)人聲音的專(zhuān)屬模式。 谷歌AI……

谷歌開(kāi)源AI能區(qū)分聲音準(zhǔn)確率達(dá)92%

據(jù)VentureBeat報(bào)道,在語(yǔ)音嘈雜的環(huán)境中,要想分辨出有幾個(gè)人講話、在什么時(shí)間講話,對(duì)于機(jī)器來(lái)說(shuō)非常困難。但谷歌人工智能(AI)研究部門(mén)在語(yǔ)音識(shí)別方面取得了新進(jìn)展,能以92%的準(zhǔn)確率識(shí)別出每個(gè)人聲音的專(zhuān)屬模式。

谷歌AI研究部門(mén)在最新名為《FullySupervisedSpeakerDiarization》的論文和相關(guān)博客文章中,研究人員描述了一種新的AI系統(tǒng),它能以一種更有效的方式識(shí)別聲音。

這套系統(tǒng)涉及到Speakerdiarization任務(wù),即需要標(biāo)注出誰(shuí)從什么時(shí)候到什么時(shí)候在說(shuō)話,將語(yǔ)音樣本分割成獨(dú)特的、同構(gòu)片段的過(guò)程。強(qiáng)大的AI系統(tǒng)必須能夠?qū)⑿碌难葜v者發(fā)音與它以前從未遇到過(guò)的語(yǔ)音片段關(guān)聯(lián)起來(lái)。

這篇論文的作者聲稱(chēng),核心算法已經(jīng)可在Github上的開(kāi)源軟件中可用,它實(shí)現(xiàn)了一個(gè)在線二值化錯(cuò)誤率(DER),在NISTSRE2000CALLHOME基準(zhǔn)上是7.6%,這對(duì)于實(shí)時(shí)應(yīng)用來(lái)說(shuō)已經(jīng)足夠低了,而谷歌之前使用的方法DER為8.8%。

谷歌研究人員的新方法是通過(guò)遞歸神經(jīng)網(wǎng)絡(luò)(RNN)模擬演講者的嵌入(如詞匯和短語(yǔ)的數(shù)學(xué)表示),遞歸神經(jīng)網(wǎng)絡(luò)是一種機(jī)器學(xué)習(xí)模型,庫(kù)卡機(jī)器人驅(qū)動(dòng)器維修,它可以利用內(nèi)部狀態(tài)來(lái)處理輸入序列。每個(gè)演講者都從自己的RNN實(shí)例開(kāi)始,該實(shí)例不斷更新給定新嵌入的RNN狀態(tài),庫(kù)卡機(jī)器人何服電機(jī)維修,使系統(tǒng)能夠?qū)W習(xí)發(fā)言者共享的高級(jí)知識(shí)。

研究人員在論文中寫(xiě)道:由于該系統(tǒng)的所有組件都可以在監(jiān)督環(huán)境下學(xué)習(xí),所以在有高質(zhì)量時(shí)間標(biāo)記演講者標(biāo)簽訓(xùn)練數(shù)據(jù)的情況下,它比無(wú)監(jiān)督系統(tǒng)更受青睞。我們的系統(tǒng)受到全面監(jiān)督,能夠從帶有時(shí)間戳的演講者標(biāo)簽例子中學(xué)習(xí)。

在未來(lái)的工作中,研究團(tuán)隊(duì)計(jì)劃改進(jìn)模型,使其能夠集成上下文信息來(lái)執(zhí)行脫機(jī)解碼,他們希望這將進(jìn)一步減少DER。研究人員還希望能夠直接對(duì)聲學(xué)特征進(jìn)行建模,這樣整個(gè)Speakerdiarization系統(tǒng)就可以進(jìn)行端到端訓(xùn)練。

,KUKA機(jī)器人示教器維修
免責(zé)聲明:本網(wǎng)部分文章和信息來(lái)源于互聯(lián)網(wǎng),本網(wǎng)轉(zhuǎn)載出于傳遞更多信息和學(xué)習(xí)之目的。如轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)立即聯(lián)系網(wǎng)站所有人,我們會(huì)予以更改或刪除相關(guān)文章,保證您的權(quán)利。