人工智能可以為司法人員做些什么
人工智能是什么?其屬于典型的計算機科學概念,對人工智能四個字的解釋難度并不亞于任何一個哲學概念,在此,不妨采用一個相對模糊的定義:人工智能,就是研究如何使計算機去做只有人才能做的智能工作。也可以換一個角度,結合與人工智能有關的三個重要概念進行理解,分別是:算力、數(shù)據(jù)和算法。
算力,即硬件的計算能力。根據(jù)摩爾定律,在價格不變的前提下,集成電路上可容納的元器件的數(shù)目及其性能每隔18個月便會增加一倍,這種速度基本代表了信息技術進步的速度。也就是說,可以將計算機視為一個背景進化速度極快的物種,而這一物種的算力也將成為人類算力的自然延伸。數(shù)據(jù),是指客觀事物未經加工的原始素材,這些素材可能包含有用的信息,只有通過特定維度所篩選出的、包含著有用信息的數(shù)據(jù),才具有使用價值。算法,是人工智能的核心,指計算機運行時所遵循的規(guī)則,也就是其思考過程。如果將計算機比作人腦,那算法就是其思維方式。正是因為有了這種思維方式,借助于足夠的算力,計算機才能在海量的數(shù)據(jù)中快速提取出包含有用信息的數(shù)據(jù),將大規(guī)模數(shù)據(jù)篩選,重組成大數(shù)據(jù)。
從算力、數(shù)據(jù)與算法的概念可以看出,人工智能即是通過算法與算力對海量數(shù)據(jù)進行計算分析并得出相應結論的技術。這種技術可以用于圍棋對弈,自然也可以用于司法領域本質上人工智能就是機器對人腦的模仿,從理論上來講,但凡人類可以做到的人工智能也一樣可以做到。
當然,這只是從理論上來講。事實上,智能輔助辦案系統(tǒng)不會替代司法人員獨立判斷。這源于機器學習與人腦學習的差異算法是人工智能的核心。從目前技術看,算法升級是一個非常艱難的過程,同時算法也不可能自主升級,所以機器學習是在算法不更新的情況下通過海量數(shù)據(jù)的輸入進行優(yōu)化,屬于數(shù)據(jù)驅動;而人腦學習則是算法驅動,雖然人類數(shù)據(jù)攝入的速度緩慢,但每次攝入都會帶來思維上的長進,這決定了只有人腦可以應對世界上出現(xiàn)的新情況,而機器只有在算法能夠覆蓋的前提下才對數(shù)據(jù)有著解讀能力。所以,人工智能究竟能幫助法律人做些什么這一問題,就變成了司法過程中有哪些數(shù)據(jù)可以通過算法進行解釋,從而利用機器的算力對人腦進行補充。以檢察官所從事業(yè)務為例,對于檢察官來說,最直接的可利用數(shù)據(jù),莫過于行使量刑建議權時所涉及的數(shù)據(jù)。
根據(jù)現(xiàn)有司法解釋規(guī)定,一般而言,量刑建議書包含了法定從重處罰情節(jié),法定從輕、減輕或者免除處罰情節(jié),酌定從重處罰情節(jié),酌定從輕處罰情節(jié)等四種情節(jié)。從計算機語言角度來看,這四種情節(jié)便是量刑建議這一問題所需要考量的四種維度,而通過這四種維度可以對法定從重處罰情節(jié)等數(shù)據(jù)進行計算,將法律條文的相應規(guī)定轉化成計算機算法,對個案所涉情節(jié)也就是個案數(shù)據(jù)進行計算并得出相應的量刑建議,這便是最基礎的人工智能。
量刑的難點在于其確定過程要對眾多酌定情節(jié)進行考量,而這些情節(jié)并未被法律所明文規(guī)定,也就是說這些酌定情節(jié)是缺乏算法的。這些酌定情節(jié)是否能轉化成算法呢?顯然,酌定情節(jié)也是可以進一步量化的酌定情節(jié)主要取決于犯罪嫌疑人及犯罪行為的人身危險性、主觀惡性和社會危害性。如果掌握了這三個方面,也就掌握了酌定情節(jié)轉化成算法的維度。
人身危險性,是指行為人將來實施犯罪的可能性,包括初犯與再犯;主觀惡性,是指行為人在犯罪中所表現(xiàn)出來的惡劣思想狀態(tài);而社會危害性是指犯罪行為本身所造成的危害。無需多言,最容易轉化成算法的是極具客觀色彩的社會危害性,那人身危險性及主觀惡性呢?司法實踐中,確定人身危險性與主觀惡性的維度大多為犯罪動機、手段、時間地點、侵害對象、損害結果、認罪態(tài)度等。但是,因為缺乏統(tǒng)一的法律規(guī)定,通過這些維度所得出的結論便不可能不因人而異。量刑建議作出者的思維方式、知識結構、人生態(tài)度、價值傾向等均可能對量刑建議造成影響,而酌定二字本身包含的個性特征又導致了量刑建議的過程不可被回溯,從而容易引發(fā)量刑任意性。
那么,為什么不將酌定情節(jié)提升為法定情節(jié)?因為法律有著其固有的缺點:滯后性。如果將所有酌定情節(jié)全部提升為法定情節(jié),那這種法律注定是遲緩而殘缺的。人類司法史由證據(jù)法定發(fā)展到自由心證,工業(yè)機器人維修,正是建立在正視法律種種局限的基礎之上。然而在法律之外,每一個個體偶發(fā)的行為,卻無法快速、全面地融入法律,這就導致了人類智慧或者說算法的浪費與重復建設。
令人欣喜的是,計算機的到來改變了這一切。人類彼此獨立,思維無法互通,同時容易遺忘但機器不會。如果所有承辦人將每一次面對酌定情節(jié)時的思維碎片記錄到同一個計算機網絡,那隨著時間的推移及數(shù)據(jù)量的增加,關于確定酌定情節(jié)的維度就會漸漸匯成大數(shù)據(jù),從而對新的量刑建議形成提示,以幫助辦案人員完成算法設計所需要的數(shù)據(jù)積累。一旦新的算法設計完成并錄入計算機,新的關于量刑建議的人工智能也便形成。
具體到人身危險性及主觀惡性,承辦人便可以將所有維度的數(shù)據(jù)在辦案的過程中錄入計算機。比如,是一般犯罪還是暴力性犯罪,是單位犯罪還是集團犯罪,是初犯還是偶犯,是過失還是故意而一旦出臺新的法律法規(guī),相應的維度可以即時在計算機中新增,計算機會如同搜索引擎一樣自動識別、歸類錄入的數(shù)據(jù)。
這一過程事實上也是連成一體的計算機將多人聯(lián)結成了一個整體:一個人的思考便是多人的思考,一個人的數(shù)據(jù)選擇便是多人的數(shù)據(jù)選擇。計算機輔助人類跨越了交流障礙、遺忘曲線與情緒波動的影響,既能夠填補法律與世界相脫節(jié)的制度空白,也能夠保持不同地區(qū)對同一法律法規(guī)適用的同一性。
更直觀的說法是,計算機可以窮盡所有數(shù)據(jù),這種強大的算力彌補了人腦的不足,從而使傳統(tǒng)時代幾年甚至幾十年才能出現(xiàn)一次的算法革命加快到每個月甚至每天一次。人工智能所提供的,正是法定與酌定的空間地帶最缺的速度。
但是,人工智能畢竟只是工具,KUKA機器人電路板維修,它還無法代替人類思考。從量刑建議權的人工智能化路徑來看,人工智能能為檢察官所做的事情還有很多但凡可以被維度化的司法工作,人工智能都可以做到,至少,能讓檢察官更方便地做到。當然,工業(yè)機器人維修,數(shù)據(jù)中所包含的信息哪些才是真正有用的,最終還是需要人類去判斷,謀殺與激情殺人哪個惡性更大?這樣的問題,從目前來看,計算機解釋不出來,它所擁有的只是一個答案。這種答案只能源于數(shù)據(jù)錄入,源于檢察官的數(shù)據(jù)選擇。